

January 2010 6667 Further Pure Mathematics FP1 Mark Scheme

Question Number	Scheme	Marks
Q1	(a) $\frac{z_1}{z_2} = \frac{2+8i}{1-i} \times \frac{1+i}{1+i}$ = $\frac{2+2i+8i-8}{2} = -3+5i$	M1 A1 A1 (3)
	(b) $\left \frac{z_1}{z_2} \right = \sqrt{(-3)^2 + 5^2} = \sqrt{34}$ (or awrt 5.83)	M1 A1ft (2)
	(c) $\tan \alpha = -\frac{5}{3}$ or $\frac{5}{3}$	M1
	$\arg\frac{z_1}{z_2} = \pi - 1.03 = 2.11$	A1 (2) [7]
	Notes (a) $\times \frac{1+i}{1+i}$ and attempt to multiply out for M1 -3 for first A1, +5i for second A1 (b) Square root required without i for M1 $\frac{ z_1 }{ z_2 }$ award M1 for attempt at Pythagoras for both numerator and denominator (c) tan or tan ⁻¹ , $\pm \frac{5}{3}$ or $\pm \frac{3}{5}$ seen with their 3 and 5 award M1 2.11 correct answer only award A1	

Question Number	Scheme	Marks
Q2	(a) $f(1.3) = -1.439$ and $f(1.4) = 0.268$ (allow awrt)	B1 (1)
	(b) $f(1.35) < 0$ (-0.568) \Rightarrow 1.35 < α < 1.4	M1 A1
	$f(1.375) < 0 (-0.146) \implies 1.375 < \alpha < 1.4$	A1 (3)
	(c) $f'(x) = 6x + 22x^{-3}$	M1 A1
	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1.4 - \frac{0.268}{16.417}, = 1.384$	M1 A1, A1 (5)
		[9]
	 Notes (a) Both answers required for B1. Accept anything that rounds to 3dp values above. (b) f(1.35) or awrt -0.6 M1 (f(1.35) and awrt -0.6) AND (f(1.375) and awrt -0.1) for first A1 1.375 < α < 1.4 or expression using brackets or equivalent in words for second A1 (c) One term correct for M1, both correct for A1 Correct formula seen or implied and attempt to substitute for M1 awrt 16.4 for second A1 which can be implied by correct final answer awrt 1.384 correct answer only A1 	

Question Number	Scheme	Marks
Q3	For $n = 1$: $u_1 = 2$, $u_1 = 5^0 + 1 = 2$	B1
	Assume true for $n = k$:	
	$u_{k+1} = 5u_k - 4 = 5(5^{k-1} + 1) - 4 = 5^k + 5 - 4 = 5^k + 1$	M1 A1
	\therefore True for $n = k + 1$ if true for $n = k$.	
	True for $n = 1$,	
	\therefore true for all <i>n</i> .	A1 cso
		[4]
	Notes Accept $u_1 = 1 + 1 = 2$ or above B1	
	$5(5^{k-1}+1) - 4$ seen award M1	
	$5^{k} + 1$ or $5^{(k+1)-1} + 1$ award first A1 All three elements stated somewhere in the solution award final A1	

Question Number	Scheme	Ма	rks
Q4	(a) (3, 0) cao	B1	(1)
	(b) P: $x = \frac{1}{3} \implies y = 2$	B1	
	A and B lie on $x = -3$	B1	
	PB = PS or a correct method to find both PB and PS	M1	
	Perimeter = $6 + 2 + 3\frac{1}{3} + 3\frac{1}{3} = 14\frac{2}{3}$	M1 A1	(5) [6]
	Notes (b) Both B marks can be implied by correct diagram with lengths labelled or coordinates of vertices stated. Second M1 for their four values added together.		[0]
	$14\frac{2}{3}$ or awrt 14.7 for final A1		

Question	Scheme	Marks
Number Q5		M1 A1
05	(a) det $\mathbf{A} = a(a+4) - (-5 \times 2) = a^2 + 4a + 10$	(2)
	(b) $a^2 + 4a + 10 = (a+2)^2 + 6$	M1 A1ft
	Positive for all values of a , so A is non-singular	A1cso
		(3)
	(c) $\mathbf{A}^{-1} = \frac{1}{10} \begin{pmatrix} 4 & 5 \\ -2 & 0 \end{pmatrix}$ B1 for $\frac{1}{10}$	
	$10(-2 \ 0)$ 10 10	B1 M1 A1 (3) [8]
	Notes	
	 (a) Correct use of <i>ad - bc</i> for M1 (b) Attempt to complete square for M1 	
	Alt 1	
	Attempt to establish turning point (e.g. calculus, graph) M1	
	Minimum value 6 for A1ft Positive for all values of <i>a</i> , so A is non-singular for A1 cso	
	Alt 2	
	Attempt at $b^2 - 4ac$ for M1. Can be part of quadratic formula	
	Their correct -24 for first A1 No real roots or equivalent, so A is non-singular for final A1cso	
	(c) Swap leading diagonal, and change sign of other diagonal, with numbers or a for M1	
	Correct matrix independent of 'their $\frac{1}{10}$ award' final A1	

Question Number	Scheme	Mark	(S
Q6	(a) $5-2i$ is a root	B1	(1)
	(b) $(x - (5 + 2i))(x - (5 - 2i)) = x^2 - 10x + 29$	M1 M1	
	$x^{3} - 12x^{2} + cx + d = (x^{2} - 10x + 29)(x - 2)$	M1	
	$c = 49, \qquad \qquad d = -58$	A1, A1	(5
	(c) Conjugate pair in 1 st and 4 th quadrants (symmetrical about real axis)	B1	
	Fully correct, labelled	B1	(2
			[8]
	2 nd M: Achieve a 3-term quadratic with no i's. (b) <u>Alternative</u> : Substitute a complex root (usually 5+2i) and expand brackets M1 $(5+2i)^3 - 12(5+2i)^2 + c(5+2i) + d = 0$ (125+150i - 60 - 8i) - 12(25+20i - 4) + (5c + 2ci) + d = 0 M1 $(2^{nd}$ M for achieving an expression with no powers of i) Equate real and imaginary parts M1 c = 49, $d = -58$ A1, A1		

Question	Scheme		Marks
Number Q7			
	(a) $y = \frac{c^2}{x}$ $\frac{dy}{dx} = -c^2 x^{-2}$		B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{c^2}{\left(ct\right)^2} = -\frac{1}{t^2}$	without <i>x</i> or <i>y</i>	M1
	$y - \frac{c}{t} = -\frac{1}{t^2}(x - ct) \implies t^2 y + x = 2ct$	(*)	M1 A1cso (4)
	(b) Substitute $(15c, -c)$: $-ct^2 + 15c = 2ct$		M1
	$t^2 + 2t - 15 = 0$		A1
	$(t+5)(t-3) = 0 \qquad \Rightarrow \qquad t = -5 t = 3$		M1 A1
	Points are $\left(-5c, -\frac{c}{5}\right)$ and $\left(3c, \frac{c}{3}\right)$	both	A1 (5) [9]
	(a) Use of $y - y_1 = m(x - x_1)$ where <i>m</i> is their gradient expression or <i>t</i> only for second M1. Accept $y = mx + k$ and attempt to find <i>h</i> (b) Correct absolute factors for their constant for second M1. Accept correct use of quadratic formula for second M1. Alternatives: (a) $\frac{dx}{dt} = c$ and $\frac{dy}{dt} = -ct^{-2}$ B1 $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = -\frac{1}{t^2}$ M1, then as in main scheme. (a) $y + x\frac{dy}{dx} = 0$ B1 $\frac{dy}{dx} = -\frac{y}{x} = -\frac{1}{t^2}$ M1, then as in main scheme.		

Question Number	Scheme	N	Narks
Q8	(a) $\sum_{r=1}^{1} r^3 = 1^3 = 1$ and $\frac{1}{4} \times 1^2 \times 2^2 = 1$	B1	
	Assume true for $n = k$: $\sum_{r=1}^{k+1} r^3 = \frac{1}{4}k^2(k+1)^2 + (k+1)^3$	B1	
	$\frac{1}{4}(k+1)^2 \left[k^2 + 4(k+1)\right] = \frac{1}{4}(k+1)^2(k+2)^2$	M1 /	Α1
	∴ True for $n = k + 1$ if true for $n = k$. True for $n = 1$, ∴ true for all n .	A1c	so (5)
	(b) $\sum r^3 + 3\sum r + \sum 2 = \frac{1}{4}n^2(n+1)^2 + 3\left(\frac{1}{2}n(n+1)\right), + 2n$	B1,	B1
	$= \frac{1}{4}n[n(n+1)^2 + 6(n+1) + 8]$	M1	
	$=\frac{1}{4}n\left[n^{3}+2n^{2}+7n+14\right]=\frac{1}{4}n(n+2)(n^{2}+7)$ (*)	A1	A1cso (5)
	(c) $\sum_{15}^{25} = \sum_{1}^{25} - \sum_{1}^{14}$ with attempt to sub in answer to part (b)	M1	
	$=\frac{1}{4}(25 \times 27 \times 632) - \frac{1}{4}(14 \times 16 \times 203) = 106650 - 11368 = 95282$	A1	(2)
			[12]
	Notes (a) Correct method to identify $(k+1)^2$ as a factor award M1		
	$\frac{1}{4}(k+1)^2(k+2)^2$ award first A1		
	All three elements stated somewhere in the solution award final A1 (b) Attempt to factorise by <i>n</i> for M1		
	$\frac{1}{4}$ and $n^3 + 2n^2 + 7n + 14$ for first A1		
	(c) no working 0/2		

Question Number	Scheme	Mark	S
00	(a) 45° or $\frac{\pi}{4}$ rotation (anticlockwise), about the origin	B1, B1	(2)
	4		(2)
	(b) $ \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 3\sqrt{2} \\ 4\sqrt{2} \end{pmatrix} $	M1	
	$\left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right) \left(q\right) \left(4\sqrt{2}\right)$		
	p-q=6 and $p+q=8$ or equivalent	M1 A1	
	p = 7 and $q = 1$ both correct	A1	(1)
-	(c) Length of <i>OA</i> (= length of <i>OB</i>) = $\sqrt{7^2 + 1^2}$, = $\sqrt{50} = 5\sqrt{2}$	M1, A1	(4)
-	$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix}$		(2)
	(d) $\mathbf{M}^2 = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$	M1 A1	
	$ \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right \right) (1 0) $		(2)
	$(0, 1)(3, \sqrt{2})$	M1 A1	
	(e) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3\sqrt{2} \\ 4\sqrt{2} \end{pmatrix}$ so coordinates are $(-4\sqrt{2}, 3\sqrt{2})$		(2)
-	Notes	[[12]
	Order of matrix multiplication needs to be correct to award Ms		
	(a) More than one transformation 0/2(b) Second M1 for correct matrix multiplication to give two equations		
	$\frac{\text{Alternative:}}{(1 \ 1)}$		
	(b) $\mathbf{M}^{-1} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 1 \end{pmatrix}$ First M1 A1		
	$\begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$		
	$ \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 3\sqrt{2} \\ 4\sqrt{2} \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \end{pmatrix} $ Second M1 A1		
	$ \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 4\sqrt{2} \end{pmatrix} (1) $		
	(c) Correct use of their <i>p</i> and their <i>q</i> award M1(e) Accept column vector for final A1.		