6667 Further Pure Mathematics FP1

 Mark Scheme| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q1 | $\text { (a) } \begin{aligned} & \frac{z_{1}}{z_{2}}=\frac{2+8 \mathrm{i}}{1-\mathrm{i}} \times \frac{1+\mathrm{i}}{1+\mathrm{i}} \\ & =\frac{2+2 \mathrm{i}+8 \mathrm{i}-8}{2}=-3+5 \mathrm{i} \end{aligned}$ | M1
 A1 A1
 (3) |
| | (b) $\left\|\frac{z_{1}}{z_{2}}\right\|=\sqrt{(-3)^{2}+5^{2}}=\sqrt{34} \quad$ (or awrt 5.83) | M1 A1ft |
| | $\begin{aligned} \text { (c) } \tan \alpha & =-\frac{5}{3} \text { or } \frac{5}{3} \\ & \arg \frac{z_{1}}{z_{2}} \end{aligned}=\pi-1.03 \ldots=2.11$ | M1
 A1
 (2)
 [7] |
| | Notes
 (a) $\times \frac{1+\mathrm{i}}{1+\mathrm{i}}$ and attempt to multiply out for M1
 -3 for first A1, +5i for second A1
 (b) Square root required without i for M1
 $\frac{\left\|z_{1}\right\|}{\left\|z_{2}\right\|}$ award M1 for attempt at Pythagoras for both numerator and denominator
 (c) tan or $\tan ^{-1}, \pm \frac{5}{3}$ or $\pm \frac{3}{5}$ seen with their 3 and 5 award M1
 2.11 correct answer only award A1 | |

Question Number	Scheme	Marks
Q3	For $n=1: u_{1}=2, u_{1}=5^{0}+1=2$ Assume true for $n=k$: $u_{k+1}=5 u_{k}-4=5\left(5^{k-1}+1\right)-4=5^{k}+5-4=5^{k}+1$ \therefore True for $n=k+1$ if true for $n=k$. True for $n=1$, \therefore true for all n.	B1 M1 A1 A1 cso
	Notes Accept $u_{1}=1+1=2$ or above B1 $5\left(5^{k-1}+1\right)-4$ seen award M1 $5^{k}+1$ or $5^{(k+1)-1}+1$ award first A1 All three elements stated somewhere in the solution award final A1	

Question Number	Scheme	Marks
Q4	(a) (3, 0) cao	B1 (1)
	(b) $P: \quad x=\frac{1}{3} \Rightarrow \quad y=2$ A and B lie on $x=-3$ $P B=P S \quad$ or a correct method to find both $P B$ and $P S$ $\text { Perimeter }=6+2+3 \frac{1}{3}+3 \frac{1}{3}=14 \frac{2}{3}$	B1 B1 M1 M1 A1 (5) [6]
	Notes (b) Both B marks can be implied by correct diagram with lengths labelled or coordinates of vertices stated. Second M1 for their four values added together. $14 \frac{2}{3}$ or awrt 14.7 for final A1	

Question Number	Scheme	Marks
Q5	(a) $\operatorname{det} \mathbf{A}=a(a+4)-(-5 \times 2)=a^{2}+4 a+10$	M1 A1
	(b) $a^{2}+4 a+10=(a+2)^{2}+6$ Positive for all values of a, so \mathbf{A} is non-singular	M1 A1ft Alcso
	(c) $\mathbf{A}^{-1}=\frac{1}{10}\left(\begin{array}{cc}4 & 5 \\ -2 & 0\end{array}\right)$ B1 for $\frac{1}{10}$	B1 M1 A1 (3) [8]
	Notes (a) Correct use of $a d-b c$ for M1 (b) Attempt to complete square for M1 Alt 1 Attempt to establish turning point (e.g. calculus, graph) M1 Minimum value 6 for A1ft Positive for all values of a, so \mathbf{A} is non-singular for A1 cso Alt 2 Attempt at $b^{2}-4 a c$ for M1. Can be part of quadratic formula Their correct - 24 for first A1 No real roots or equivalent, so \mathbf{A} is non-singular for final A1cso (c) Swap leading diagonal, and change sign of other diagonal, with numbers or a for M1 Correct matrix independent of 'their $\frac{1}{10}$ award' final A1	

Question Number	Scheme	Marks
Q6	(a) 5-2i is a root	B1 (1)
	$\begin{gathered} \text { (b) } \begin{array}{c} (x-(5+2 \mathrm{i}))(x-(5-2 \mathrm{i}))=x^{2}-10 x+29 \\ x^{3}-12 x^{2}+c x+d=\left(x^{2}-10 x+29\right)(x-2) \\ c=49, \quad d=-58 \end{array} \end{gathered}$	M1 M1 M1 A1, A1
	(c) Conjugate pair in $1^{\text {st }}$ and $4^{\text {th }}$ quadrants (symmetrical about real axis) Fully correct, labelled	B1 B1 (2) [8]
	(b) $1^{\text {st }} \mathrm{M}$: Form brackets using $(x-\alpha)(x-\beta)$ and expand. $2^{\text {nd }} \mathrm{M}$: Achieve a 3-term quadratic with no i's. (b) Alternative: Substitute a complex root (usually $5+2 \mathrm{i}$) and expand brackets M1 $\begin{aligned} & (5+2 \mathrm{i})^{3}-12(5+2 \mathrm{i})^{2}+c(5+2 \mathrm{i})+d=0 \\ & (125+150 \mathrm{i}-60-8 \mathrm{i})-12(25+20 \mathrm{i}-4)+(5 c+2 c \mathrm{i})+d=0 \end{aligned}$ ($2^{\text {nd }} \mathrm{M}$ for achieving an expression with no powers of i) Equate real and imaginary parts $c=49, \quad d=-58$ A1, A1	

Question Number	Scheme	Marks
Q7	$\begin{align*} \text { (a) } \begin{aligned} y=\frac{c^{2}}{x} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x} & =-c^{2} x^{-2} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\frac{c^{2}}{(c t)^{2}}=-\frac{1}{t^{2}} \\ y-\frac{c}{t}=-\frac{1}{t^{2}}(x-c t) & \Rightarrow \quad t^{2} y+x=2 c t \end{aligned} \quad \text { without } x \text { or } y \end{align*}$	B1 M1 M1 A1cso (4)
	(b) Substitute $(15 c,-c): \quad-c t^{2}+15 c=2 c t$ $\begin{gathered} t^{2}+2 t-15=0 \\ (t+5)(t-3)=0 \quad \Rightarrow \quad t=-5 \quad t=3 \end{gathered}$ Points are $\left(-5 c,-\frac{c}{5}\right)$ and $\left(3 c, \frac{c}{3}\right)$	M1 A1 M1 A1 A1 (5) [9]
	Notes (a) Use of $y-y_{1}=m\left(x-x_{1}\right)$ where m is their gradient expression in terms of c and / or t only for second M1. Accept $y=m x+k$ and attempt to find k for second M1. (b) Correct absolute factors for their constant for second M1. Accept correct use of quadratic formula for second M1. Alternatives: (a) $\frac{\mathrm{d} x}{\mathrm{~d} t}=c \quad$ and $\quad \frac{\mathrm{d} y}{\mathrm{~d} t}=-c t^{-2} \quad$ B1 $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{1}{t^{2}} \quad$ M1, then as in main scheme. (a) $\begin{array}{ll} y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 & \text { B1 } \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{y}{x}=-\frac{1}{t^{2}} & \text { M1, then as in main scheme. } \end{array}$	

Question Number	Scheme	Marks
Q8	(a) $\sum_{r=1}^{1} r^{3}=1^{3}=1$ and $\frac{1}{4} \times 1^{2} \times 2^{2}=1$ Assume true for $n=k$: $\begin{aligned} & \sum_{r=1}^{k+1} r^{3}=\frac{1}{4} k^{2}(k+1)^{2}+(k+1)^{3} \\ & \frac{1}{4}(k+1)^{2}\left[k^{2}+4(k+1)\right]=\frac{1}{4}(k+1)^{2}(k+2)^{2} \end{aligned}$ \therefore True for $n=k+1$ if true for $n=k$. True for $n=1$, \therefore true for all n.	B1 B1 M1 A1 Alcso
	$\text { (b) } \begin{align*} & \sum r^{3}+3 \sum r+\sum 2=\frac{1}{4} n^{2}(n+1)^{2}+3\left(\frac{1}{2} n(n+1)\right),+2 n \\ = & \frac{1}{4} n\left[n(n+1)^{2}+6(n+1)+8\right] \\ = & \frac{1}{4} n\left[n^{3}+2 n^{2}+7 n+14\right]=\frac{1}{4} n(n+2)\left(n^{2}+7\right) \tag{*} \end{align*}$	B1, B1 M1 A1 Alcso (5)
	$\begin{aligned} & \text { (c) } \sum_{15}^{25}=\sum_{1}^{25}-\sum_{1}^{14} \quad \text { with attempt to sub in answer to part (b) } \\ & =\frac{1}{4}(25 \times 27 \times 632)-\frac{1}{4}(14 \times 16 \times 203)=106650-11368=95282 \end{aligned}$	M1 A1 (2) [12]
	Notes (a) Correct method to identify $(k+1)^{2}$ as a factor award M1 $\frac{1}{4}(k+1)^{2}(k+2)^{2}$ award first A1 All three elements stated somewhere in the solution award final A1 (b) Attempt to factorise by n for M1 $\frac{1}{4}$ and $n^{3}+2 n^{2}+7 n+14$ for first A1 (c) no working $0 / 2$	

Question Number	Scheme	Marks
Q9	(a) 45° or $\frac{\pi}{4}$ rotation (anticlockwise), about the origin	B1, B1 (2)
	(b) $\left(\begin{array}{cc}\frac{1}{\sqrt{ } 2} & -\frac{1}{\sqrt{ } 2} \\ \frac{1}{\sqrt{ } 2} & \frac{1}{\sqrt{ } 2}\end{array}\right)\binom{p}{q}=\binom{3 \sqrt{ } 2}{4 \sqrt{ } 2}$ $p-q=6$ and $p+q=8$ or equivalent $p=7$ and $q=1$ both correct	M1 M1 A1 A1 (4)
	(c) Length of $O A(=$ length of $O B)=\sqrt{7^{2}+1^{2}},=\sqrt{50}=5 \sqrt{2}$	M1, A1 (2)
	(d) $\mathrm{M}^{2}=\left(\begin{array}{cc}\frac{1}{\sqrt{ } 2} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{ } 2} & \frac{1}{\sqrt{ } 2}\end{array}\right)\left(\begin{array}{cc}\frac{1}{\sqrt{ } 2} & -\frac{1}{\sqrt{ } 2} \\ \frac{1}{\sqrt{ } 2} & \frac{1}{\sqrt{ } 2}\end{array}\right)=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	M1 A1 (2)
	(e) $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\binom{3 \sqrt{2}}{4 \sqrt{2}}$ so coordinates are $(-4 \sqrt{ } 2,3 \sqrt{ } 2)$	M1 A1
	Notes Order of matrix multiplication needs to be correct to award Ms (a) More than one transformation $0 / 2$ (b) Second M1 for correct matrix multiplication to give two equations Alternative: (b) $\begin{array}{ll} \mathbf{M}^{-1}=\left(\begin{array}{cc} \frac{1}{\sqrt{ } 2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{ } 2} \end{array}\right) & \text { First M1 A1 } \\ \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right)\binom{3 \sqrt{ } 2}{4 \sqrt{ } 2}=\binom{7}{1} & \text { Second M1 A1 } \end{array}$ (c) Correct use of their p and their q award M1 (e) Accept column vector for final A1.	

